Vapor pressure deficit

Definition

The vapor pressure deficit Δe is the difference between saturation e_{s} and actual vapor pressure e_{a}

Formula

The vapor pressure deficit $\Delta e[\mathrm{kPa}]$ can be calculated using temperature and relative humidity as follows (cf. Allen et al. 1998):

$$
\Delta e=e_{s}-e_{a}
$$

with

$$
e_{s}=0.6108 \cdot e^{\frac{17.27 \cdot T}{T+237.3}}
$$

and

$$
e_{a}=e_{s} \cdot \frac{H}{100}
$$

where T is temperature [${ }^{\circ} \mathrm{C}$] and $H[\%]$ relative humidity.

However, using mean air temperature as above results in a lower estimate of e_{s}, thus in a lower vapor pressure deficit. It would therefore be more appropriate to use, if available, maximal and minimum temperature for calculating e_{s}, as follows (Allen et al. 1998):

$$
e_{s}=\frac{1}{2}\left(0.6108 \cdot e^{\frac{17.27 \cdot T_{\max }}{T_{\max }+237.3}}+0.6108 \cdot e^{\frac{17.27 \cdot T_{\min }}{T_{\min }+237.3}}\right)
$$

where $T_{\max }$ is maximal temperature $\left[{ }^{\circ} \mathrm{C}\right]$ and $T_{\min }$ minimal temperature $\left[{ }^{\circ} \mathrm{C}\right]$.
NB: The conversion between kiloPascals and millimeters of mercury is as follows: $1[\mathrm{kPa}]=7.500616827042[\mathrm{mmHg}]$

Reference

Allen et al. (1998)

